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Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations
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We investigate the quantum thermal transport properties of graphene nanoribbons (GNRs) with natural edges
by combining the Naval Research Laboratory tight-binding approach and the phonon nonequilibrium Green’s
function method. Thermal transport of GNRs shows substantial dependence on the width due to edge recon-
structions. For GNRs with n=12, where n is the number of atoms along the direction perpendicular to the
ribbon axis, the effect of natural edges is negligible and quantized thermal transport is observed. For GNRs
with 2<<n <12, natural edges destroy quantized thermal transport and reduce thermal conductance signifi-
cantly. For the narrowest GNR with n=2, perfect quantized thermal transport is restored and a zero-
transmission phonon band gap appears at w=785~808 cm~!. By sandwiching the narrowest GNR between
two wide GNRs, the band gap is broadened by about ten times. The thermal conductivity of graphene evaluated
from our results agrees very well with the recent experimental measurements.
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I. INTRODUCTION

Graphene has attracted considerable attention in recent
years due to its versatile electronic properties' that are ex-
pected to be important for future nanoelectronics.® Interest-
ingly, the electronic properties of graphene change in a non-
trivial manner when going from bulk to nanometer size due
to edge effects.!'®> As the size of electronic devices de-
creases, the understanding of nanoscale thermal transport7’8
becomes desirable for the miniaturization in the electronic
devices. At nanoscale, the systems are of finite sizes and
discrete, therefore continuum theories such as the Boltzmann
equation will definitely not be suitable to describe such sys-
tems. One of the alternatives to the Boltzmann equation, the
molecular-dynamics (MD) simulation based on atomic mod-
els, has been widely used to study a variety of carbon-based
nanostructures.”8 However, since MD is a purely classical
method, quantum effect cannot be taken into account.

Since geometric effects are important at nanoscale’ and
graphene nanoribbons (GNRs) have open structure at the
edges, we expect to unveil thermal properties related to
atomic details in GNRs explicitly by combining two ap-
proaches: the Naval Research Laboratory tight-binding (TB)
(Ref. 10) method and the phonon nonequilibrium Green’s
function (NEGF) (Refs. 8 and 11) method. The nonorthogo-
nal TB model has been shown to describe accurately the
elastic constants and phonon dispersion of carbon
systems.!>!3 We do not consider hydrogen passivation at the
edges of GNRs or edge atoms at their perfect positions.
However, we consider natural edges by performing atomic
relaxation with the TB approach. Our consideration is real-
istic and reasonable since hydrogen atoms do not contribute
much to thermal transport in carbon systems and natural re-
constructions at edges always happen in real systems. Force
constants are obtained with numerical finite differences by
systematic displacement of each atom. Subsequently we use
NEGF (Refs. 8, 14, and 15) method to calculate the thermal
transport properties of different GNR-n, where n is the num-
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ber of atoms along the direction perpendicular to the ribbon
axis.

Due to natural edges, thermal transport properties of
GNRs show significant dependence on their widths that can
be described by n. We find that n=12 is the threshold width
above which the effect of natural edges is negligible and
quantized thermal transport is observed. Below the threshold
width, natural edges destroy quantization of the transmission
coefficient and reduce thermal conductance of GNRs. The
thermal conductivity of a single-layered graphene evaluated
from our conductance values and experimental mean-free-
path value has a good agreement with the experimental mea-
surements at room temperature. We find a zero-transmission
band gap located at w=785~808 cm™' in the narrowest
GNR with n=2 and the band gap is enlarged by a large factor
of 10 when the GNR-2 is sandwiched between two wide
GNRs leads.

The paper is organized as follows. In Sec. II we describe
our model and numerical methods used for this study. In Sec.
Il we demonstrate and discuss the effect of edges on the
thermal conductance of GNRs and the resulting width depen-
dence. Comparison of calculated thermal conductivity for
graphene with experimental measurements is provided in this
section. Section IV is devoted to a sandwiched configuration
of GNRs which exhibits unusual thermal transport proper-
ties. Conclusions are found in Sec. V.

II. MODEL AND METHODOLOGY

We consider a junction connected to two semi-infinite
long leads. The junction is the central part (labeled as C) and
the two leads are the left (L) and right regions (R). The

Hamiltonian®!3 is given by
H= > H,+ ") VEUC + (uC)TVERYR, (1)
a=L,C,R

L/ anToa . 1
where H,=5%) i+ 5(u*)"K*u® represents coupled har-
monic oscillators, u® is the mass-normalized displacement in
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FIG. 1. (Color online) (a) Configuration of different GNR-4.
Full circles represent the configuration of the perfect GNR-4.
Circles with and without “+” represent two configurations after re-
laxation. (b) Thermal conductance o of perfect GNR-4 at 300 K
versus the number of atoms N in the center region. N takes 2n, 4n,
6n, 12n, 18n, 24n, 36n, 48n, and 64n.

region «, and u“ is the corresponding conjugate momentum.
K% is the spring constant matrix and V2¢=(V¢L)T is the cou-
pling matrix between L and C regions; similarly for V. The
semi-infinite left and right regions have perfect periodicity
along the ribbon axis and are assumed to be at different
equilibrium heat-bath temperatures. We should point out that
Eq. (1) takes into account three-dimensional vibrational
modes. This differs from a recent work'® in which out-of-
plane modes are considered

We cut a GNR with zigzag edges from an infinite
graphene sheet at its lowest-energy state and relax the system
to its minimum-energy configuration using the TB method.'?
Here we only consider GNRs with zigzag edges because they
have stable energy states after relaxation. GNRs with arm-
chair edges are very unstable during structural minimization
and only metastable states can be found when hydrogen at-
oms are not passivated at armchair edges.!” We find that the
narrowest ribbon, GNR-2, is quite stable as its configuration
remains unchanged after relaxation. However, GNRs-n con-
figurations with n>2 experience significant changes near the
edges after relaxation. These observations are demonstrated
in Fig. 1(a) where three configurations of GNR-4 are in-
cluded. One corresponds to the perfect GNR-4 and two are
obtained after relaxations from different initial configura-
tions. The two final states have different configurations as
shown in Fig. 1(a), but they have almost the same energy
with an energy difference |E|—E}|=0.07 eV/(96-atom).
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We perform first-principles calculations with Vienna ab
initio simulation package (VASP) (Ref. 18) to confirm our TB
observations in GNR-4. Comparison of results obtained with
these two methods are presented in Table I. The difference in
C-C bond length is about 1.2%. As shown in Table I, the final
energy difference for two perturbed GNR-4 with VASP calcu-
lations is also small, —E£|=O.l4 eV/(96-atom). Recon-
struction at the edges is also observed using VASP, which is
consistent with the results from TB method.

After performing the relaxation, we subject the GNR sys-
tem to individual atomic displacement and evaluate the re-
sulting forces on all atoms. Repeating the process for each
atom, the force constants are then evaluated using a central-
difference scheme. We use a reasonably small maximum dis-
placement of 3X10™* A which is 2 orders of magnitude
smaller than that commonly used in a supercell force-
constant method."”

The ballistic thermal conductance of a junction connected
to two leads at different equilibrium heat-bath temperatures
is given by the Landauer formula,

i
o'(T)—fO zﬂ_th[w]aT, (2)

where f={exp[fw/(kgT)]—1}"" is the occupation distribution
function for heat carriers at the reservoirs, and T[w] is the
transmission coefficient (or transmittance). For ideal quasi-
one-dimensional periodic systems, 7 w] is just the number of
phonon branches at frequency w at low temperatures, i.e., the
thermal transport is quantized at the universal value, oy
=mkzT/3h, for periodic systems.'?* When the system is
not perfectly periodic, several other approaches can be used
to calculate the transmission (see Ref. 8). In this paper, we
use phonon NEGF method through the Caroli formula to
compute the transmission coefficient,

Mw]=Tr(G'T,GT), (3)

where G'=(G%)"=[(w+in)*~K -3]-3:]"! is the retarded
Green’s function for the center region, while I',=i(3) -3%)
describes the interaction between the leads and the central

region. The retarded self-energy of the leads is given by
3" =VCag V€ where

g =[(w+in’1-KT" (4)
is the retarded surface Green’s function for the leads. As we
can see, the transmission coefficient can be obtained if we

know the surface Green’s function g7, which can be obtained
from Eq. (4). The thermal conductivity of a finite sample is

TABLE 1. Comparison of C-C bond length and reconstruction energy by VASP calculations and TB
method. We consider two slightly randomly perturbed GNR-4 with 96 atoms per supercell. E’i and E’2 (with
unit eV) are the total energies of the initial states. EJ; and Ef; (with unit eV) are the total energies of the final
states. AE; and AE, are the energy difference between the final states and the initial states. For easy
comparisons, the total energies have been shifted in such a way that E’1 are zero for VASP and TB calculations.

Methods ag(A) E E| AE, E, E AE,
DFT 1.412 0 -3.636 -3.636 1.986 -3.775 -5.761
TB 1.425 0 -4.275 -4.275 2510 -4.350 -6.860
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FIG. 2. (Color online) Transport properties of GNRs with width
n=2 and n=4. Dotted curve corresponds to the case for the relaxed
structure (RS) of GNR-4 and dashed curve corresponds to the case
for the perfect structure (PS) of GNR-4. (a) Thermal conductance of
GNR-2 and GNR-4. (b) Transmission of GNR-2 and GNR-4.

related to its conductance by xk=0cl/S, where [ is the length
of the suspended segment of the graphene, and S is its cross
section. Since the cross section is not well defined in GNRs,
we will discuss the results in terms of conductance.

Our phonon NEGF approach is essentially a generaliza-
tion of the fermionic NEGF method?! to the case of bosons.
The generalization is discussed in details in Refs. 8 and 15.
The NEGF formalism provides powerful means to handle
open quantum systems that are not confined but connected to
reservoirs. This technique is promising for a truly first-
principles approach and it appears to give excellent results
up to room temperatures. !>

In our investigation, the default length of the central part
is 7.4 A (3\3a,, where a, is the C-C bond length). The
number of atoms in this default length is 6n. Since the rel-
evant interaction in our system is long ranged, thermal con-
ductance is expected to increase with system size and con-
verge to a constant in the bulk limit. This expectation is
confirmed in Fig. 1(b). Thermal conductance o increases
with the system size N monotonously. However, the incre-
ment becomes gradual after N> 6n. Hereafter, we employ 6n
as a suitable size to predict thermal conductance in GNRs.
Note that if we set a cut-off distance L. for interaction, o will
remain the same when the system size is larger than L.

II1. EDGES EFFECT ON THERMAL TRANSPORT OF
GNRS

Figure 2 compares the transmission 7]w] and thermal
conductance o for GNR-2 and GNR-4. The full curve in
Fig. 2 shows the transport properties of the GNR-2, which is
the most stable, without distortion at the edges. Its transmis-
sion exhibits a stepwise structure that reflects the number of
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FIG. 3. (Color online) (a) Transmission of GNR-n with n=2, 4,
10, 12, and 20. (b) Enlarged from the shaded region in (a). (c)
Thermal conductance versus GNRs’ width n at temperatures 50,
100, 200, 300, 500, 800, 1500, and 2500 K from bottom to top. The
dotted line is a fitting curve for n=12 at 300 K.

phonon modes in the corresponding frequency regions. In
this case, the propagating phonons in each mode are not
scattered and they are transmitted perfectly through the
GNR-2. Thus, the thermal conductance is quantized as the
universal value at low temperatures from Eq. (2). In particu-
lar, we observe a narrow zero-transmission band located at
©=785~808 cm™! in which no phonon contributes to the
thermal current. This zero-transmission band only exists in
GNR-2 which is the narrowest GNR with zigzag edges.
However quantized thermal transport is destroyed in a re-
laxed GNR-4 which has random edges [see the dotted curve
in Fig. 2]. The corresponding o is very small. In contrast, the
thermal transport properties of a perfect GNR-4 are plotted
[see the dashed curve in Fig. 2]. Steplike 7] w] of the perfect
GNR-4 is distinct in Fig. 2(b) and the corresponding o is
much higher than that of the relaxed GNR-4 as shown in Fig.
2(a).

As the GNR width increases from n=4, the transmission
Tlw] and o increase monotonously as shown in Fig. 3.
An interesting phenomenon is that for n=12, quantized
thermal transport is restored. The reemergence of steplike
features of T{w] can be seen clearly in Figs. 3(a) and 3(b).
Therefore, n=12 can be identified as the threshold width
above which the effect of natural edges is negligible and
quantized thermal transport is expected. This expectation is
confirmed in Fig. 3(c) in which o depends linearly on
the width of GNRs for n=12. This is physically consistent
with the fact that within quantized thermal transport re-
gime, the number of phonon modes (and hence o) depends
linearly on the number of atoms in the GNR, and hence n.
The width threshold n=12 suggests a suitable width of GNR
in order to explore thermal properties of graphene. Using our
o value with n=12 and the experimental mean-free-path

115401-3



LAN et al.
o~ 2.0,@ T NE2 NES o)
[ I N =10 N=20 X .
2 z | dhttyernenirwn
b e 0.1 YVVV VY VTV VYV —V-vvy
<<<~<<<3 (4414 —44
oot =%
Nga N /.>->»->—>->»
2 1E-3 »
) 300 600 900 1200 0 4 8 12 N 16 20
3 c
T4 N.=2 )
= c =a (N { P
3 N =4 2
2 .
iR 1
1 "
i

400 800 1200 1600
o (cm™)

NERE 7418
0 400 800 1200 1600
o (cm™)

FIG. 4. (Color online) (a) Thermal conductance of the sand-
wiched device versus temperature for different numbers of cells N,
in the central region. For comparison, the full line corresponds to
the conductance of an infinite GNR-2. (b) Thermal conductance
versus the number of cells N, at temperatures 10, 30, 50, 200, 500,
and 1000 K from bottom to top. (¢) Transmission of the sandwiched
device with N, equal to 2 and 4. (d) Transmission of the sandwiched
device with N, equal to 7 and 17.

value L=775 nm,?? we can evaluate the thermal conductiv-

ity of graphene with the relation xk=oL/S. We find that
at room temperature k=3410 W/mK, which agrees well
with the recent experimental measurements of «=3080
~5150 W/mK in graphene.?

IV. THERMAL PROPERTIES OF SANDWICHED GNRS

In this section, we consider a nanostructure in which a
GNR-2 with finite length is sandwiched between two wide
semi-infinite GNRs (n=12). This structure is similar to a
one-dimensional chain connected with two bulk leads. The
length of the center GNR-2 is characterized by N,: the num-
ber of basis unit cells. This simple structure exhibits unusual
thermal transport properties and it may be used as a device as
shown below.

First, the device generally has a small thermal conduc-
tance compared to an infinite GNR-2 as shown in Fig. 4(a)
and o has a dependence on the length N, of the central re-
gion as shown in Fig. 4(b). The conductance ¢ has a valley
around N.=8~9 and o depends sensitively on N, at low
temperatures. When the temperature increases to over 50 K,
the valley disappears and o decreases slowly as N, increases.
The conductance o is expected to converge to a constant at a
certain temperature as N, increases continuously. The length
dependence of o in this sandwiched device is opposite to the
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observation in Fig. 1(b). But they are not incompatible. For
an infinite perfect structure which is produced by aligning
the central part periodically in general NEGF models,
phonons transfer without scattering. As N, increases, addi-
tional phonons with long wavelengths contribute to thermal
conductance. However for the sandwiched device, there are
two interfaces that scatter phonons from the central part and
significantly suppress thermal conductance. As the junction
size increases, more phonons are scattered by the interfaces
and the corresponding thermal conductance decreases. Other
groups also found similar length dependence of thermal
transport through one-dimensional alkane chains connected
with bulk materials.??

Second, T[w] changes from a continuous band to a split
band with a wide gap at 780 cm™' <w <1000 cm™! for N,
> 5 as shown in Figs. 4(c) and 4(d) with selected N,. Within
the band gap, no phonon of that frequency can be transmitted
through the device. This wide band gap is quite robust as it
remains at the same width and at the same location for N,
=5~20. But the band gap will immediately disappear if we
replace the GNR-2 with other GNRs. We suggest that the
wide band gap extended from the intrinsic band gap in
GNR-2 is due to the strong scattering from the interfaces.
When 2=N_.=4, all atoms at the central region have good
coupling with the leads. In this case, overlaps of different
phonon branches result in a continuous transmission in
whole w space. However, when N.=5 the strong scattering
from the leads results in the disappearance of vibration
modes in the range 780 cm™'<w<1000 cm™'. This par-
ticular range is always found to have a relatively small trans-
mission for any carbon-based systems. If we consider the
nonlinear interactions in GNRs, the effective transmission
should depend on temperature according to the vibrational
band studies in Ref. 24. This opens the possibility of manipu-
lating thermal transport®* or phononic waves? through nan-
odevices based on GNRs.

V. CONCLUSIONS

In summary, the effect of natural edges plays a substantial
role on thermal transport of GNRs. The natural edges result
in strong width dependence of thermal transport for different
GNRs. By sandwiching the narrowest GNR between two
wide GNRs, we have shown the possibility of manipulating
phonon band gap in such nanostructures.
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